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Abstract

Three-dimensional oscillatory thermocapillary convection in silicone oil liquid bridge is studied numerically by
means of finite volume method (FVM). The results reveal the existence of two different oscillatory modes: pulsating and
rotating oscillations. Close to the onset of oscillation, the pulsating oscillatory convection is observed. With the in-
crement of Marangoni number Ma, the pulsating oscillatory convection is replaced by rotating oscillatory convection,
where the temperature and velocity fields demonstrate the characteristics of rotation. An approximately linear
relationship between Ma and dimensionless main frequency f* = fH>»~" is found for 4s = 4.0 in periodic oscillatory
regime. This relationship becomes a little more complex for As = 1.0. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is a growing awareness of the significance of
thermocapillary and Marangoni convection in fluid as-
sociated with gradients in surface tension to a wide
variety of materials processes. The significance of the
Marangoni effect in liquid metal and semiconductor
processes is shown to be particularly strong and is a
major factor in guiding the control of industrial pro-
cesses. The floating zone technique is a promising con-
tainerless method to realize higher-quality crystals of
semiconductors under microgravity. Thermocapillary
convection is important for mass and heat transport in
crystal growth and is investigated with half-zone liquid
bridge model in the present paper.

So far, there have been some experiments both on the
earth and in space to examine the thermocapillary flow
in half-zone liquid bridge [1-9]. The experimental studies
on the relationship between Ma and oscillatory main
frequencies of thermocapillary flow in half-zone were
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conducted in [1,6,8]. The approximate linear relation-
ship between Ma and oscillatory frequency for NaNOs;
liquid bridge with As>1 was found on the earth [1].
Velten et al. [6] reported that the main trend is a slight
increment of the frequency with increasing
AT (Ma < AT). The average linear dependence of fre-
quency on AT is only a rough approximation. One of the
typical features for zones with 4s ~ 1 is that the fre-
quency decreases firstly then increases again at higher
AT (larger Ma). Schwabe and Frank [8] presented that
the oscillatory main frequency f was approximately
proportional to Ma for A4s = 1.5, and they also reported
that more typical frequency property was that: with in-
creasing Ma, higher frequencies are obtained at near the
onset of oscillation, then the oscillatory main frequency
jumps to a lower value, and next it keeps as a constant,
finally it increases with the increment of Ma.

Two types of oscillations were found both exper-
imentally and numerically. Frank and Schwabe [7] re-
ported that both pulsating and rotating oscillations
were observed for azimuthal wave numbers m = 1 and
2 in their experiment. The numerical result of Savino
and Monti [10] revealed that immediately after the
onset of instability, the pulsating oscillatory flow is
excited, then this pulsating oscillation mode is taken
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Nomenclature

As aspect ratio H/R

f oscillatory frequency

fr dimensionless frequency fH?» !
Gr Grashof number aATgH? /v?

H height of the liquid bridge

k thermal conductivity

Ma Marangoni number o, ATH /(ovx)

ng,n,. and n. unit vector in azimuthal, radial, and
axial direction, respectively

Pr Prandtl number v/x

r*(6",r*,z*) dimensionless coordinate in
circumferential, radial, and axial
direction, respectively

R radius of liquid bridge

R* dimensionless radius of liquid bridge
Re thermocapillary Reynolds number
oxATH /(0v*) Ma/Pr

r dimensionless time txH 2

T temperature

T* dimensionless temperature (7 — T,,)/
AT

T temperature at hot disc

T: temperature at cold disc

T, (hh+ T.)/2

u(u, v, w) velocity vector respect to r(0,r,z)

u*(u*, v*, w*) dimensionless velocity vector

o linear temperature expansion coefficient

0 Kronecker operator

AT temperature difference between two
discs Ty, — T,

% thermal diffusivity

v kinematical viscosity

0 density

g surface tension

0o surface tension at 7,,

o surface tension coefficient

\Y the gradient operator in cylindrical
coordinate

over by rotating oscillation with the further increment
of Ma. Yasuhiro et al. [11] also reported two types of
oscillatory modes: pulsating and rotating oscillations in
their 3D direct numerical simulation based on finite
difference scheme. Besides, Leypoldt et al. [12] studied
numerically thermocapillary convection beyond the
first symmetry-breaking in both high-P+ and low-Pr
liquid bridge. The composition of the supercritical flow
is investigated in terms of the amplitudes of the critical
mode and its higher spatial harmonics. The present
paper aims to study systematically the Ma effects on
oscillatory modes and frequencies in periodic oscilla-
tory regime.

2. Mathematical models

The half-zone liquid bridge is a typical model to
study thermocapillary flow in floating zone [1-13], and it
is also adopted in the present study. The half-zone with a
non-deformable cylindrical free surface of radius R is
suspended between two discs with different temperatures
as shown in Fig. 1. The temperature difference and
height between two discs are AT and H, respectively.
The liquid is assumed as a Newtonian fluid with con-
stant kinematical viscosity and density. Liquid surface is
idealized to be adiabatic from the environmental gas. A
cylindrical coordinate system with its origin at the center
of the bottom of liquid column is used. The surface
tension is considered to be a linearly decreasing function
of the temperature as ¢ = gy — 0, 7.

For incompressible fluid, the governing equations in
the Boussinesq approximation are:
Continuity equation:

V-u=0, (1)
Momentum equation:
0(du/dt) + o(u - V)u — gvVu

= —VP +a9(T,, — T)gn. + F,6(r — R), (2)

Energy equation:

0C,(dT/dt) + oCp(u- V)T — kV?T =0, (3)

where V denotes the gradient operator in cylindrical
coordinates; ¢ indicates Kronecker operator; F6(r — R)
represents surface tension Fy which only acts on the free
surface (r = R); o stands for linear expansion coefficient,

e T
. adiabatic
Z free surface
Y | T

\cold disc N\
\\\\\\\\\\

A
\/

Fig. 1. Geometry and coordinate system.
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u for velocity vector, ¢ for density, C, for specific heat, k
for thermal conductivity, g for gravity, P for pressure, v
for kinematic viscosity. Surface tension on cylindrical
free surface is

F, = (1/R)(35/30)n, — o/Rn, + (30 /3z)n.. (4)

where ny,n, and n. are unit vectors in 0, r and z direc-
tions, respectively.

Due to the hypothesis of non-deformable free sur-
face, the surface tension component in r direction loses
its effect, and Eq. (4) can be simplified as

F, = (1/R)(30/30)n, + (35 /2z)n.. (5)

The scales H, H*/x,%/H, and gw?/H? are adopted for
length, time, velocity, and pressure. Here, » denotes
thermal diffusivity. Scaled dimensionless temperature is
r*=(T-T,/AT with T,=(T4+17)/2 and
AT = T, — T.. The important dimensionless parameters
are Prandtl number Pr=v/x, Grashof number
Gr = aATgH? /v, aspect ratio As = H /R and Marangoni
number Ma = o, ATH /(ovx).
Dimensionless basic equations take the form

V-u =0, (6)
ou' /o + (u' - V)u' — PV’
= —VP' — GrP?T'n. — [(1/R*)(3T" /36" )n,
+0T"/oz'n,]MaPro(r* — R), (7)

T /ot 4 (w* - V)T* — V2T" = 0. (8)

Boundary conditions are:
Upper-disc : non-slip and fixed temperature
T*=0.5.

2]

Lower-disc : non-slip and fixed temperature
7" =-0.5.
Free surface : impervious to flow of mass,

momentum and energy.

For some cases, quiescent liquid with linear temperature
distribution along z-axis T* = z* — 0.5 is taken as initial
conditions. In order to save CPU time, the solution for
similar conditions (identical Pr and A4s, but a little dif-
ferent Ma) is also used as initial condition for some
cases.

By rewriting the above basic equations in the con-
servative form, and then integrating over a control
volume, equations are discretized by finite volume
method (FVM) with staggered grid. Instead of inducing
surface tension in boundary conditions as the balance
between shear stress and surface tension in literature
[10-13], the surface tension is induced directly as the
source term in momentum Egs. (2) and (5) with ¢ op-
erator. Although both boundary condition and source
term can be treated as the same way in FVM, the inte-
gration form in the control volume CV for surface ten-
sion term in Eq. (2) becomes [ F0(r —R)dv = [, Fyds
(A4 represents area of free surface). The discretization
and coding for surface tension [, Fyds is straightforward
in FVM. SMART (bounded QUICK) scheme is applied
to convection term to solve velocity and temperature.
Non-uniform grids were adopted to increase the reso-
lution, and the local finer grids in the region near the
solid discs and free surface as shown in Fig. 2 are used
for the reason of the steep temperature and velocity
gradients near two discs. The flow field is solved by an
improved SIMPLE algorithm. The grids (Ny X N, x N,)
adopted in the present computations are 40 x 24 x 40

Fig. 2. Cylindrical coordinate meshes for cases of 4s = 1.0.
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for As =4 and 40 x 34 x 38 for 4As = 1. Comparing
presented results with above grids, the relative errors of
resulting oscillatory main frequency are within 1% for
As = 4.0 with grids 28 x 20 x 30 (case Ma = 1.65 x 10%)
and for As=1 with grids 32x28x30 (case
Ma = 2.64 x 10%).

3. Validation

The validation of this code for thermocapillary flow
computation is checked carefully for both high-Pr and
low-Pr flows. For Pr=0.01, Re = 3500 (Re = Ma/Pr)
and As = 1, the same stationary non-axisymmetric flow
structures (m = 2) as that in [13] are obtained. The ob-
tained maximum velocity Up,.x and velocity component

in 0 direction, Uy are 0.0877 and 0.014, respectively,
which are comparable with numerical results
Unax = 0.08647 and U, = 0.0134 in [13].

Comparison with the experimental result in [7] is also
conducted in the present numerical study. The results
are listed in Table 1. The resulting 3-fold symmetrical
flow pattern as shown in Fig. 3 is also consistent with
experimental report.

4. 3D pulsating oscillatory thermocapillary flow

For small Ma in half-zone, thermocapillary flow is
steady and axisymmetrical, but this flow becomes 3D
non-axisymmetry with increasing Ma, and this flow mode
depends on the Prandtl number Pr. For low-Pr flow, the

Table 1

Comparison of main frequency
AT Ma Pr Gr As Present result (1/s) Frank’s experimental result (1/s)
(XK) Way down? Way up®
92 28,257 7 240.95 0.73 1.226 1.318 1.357

#Way down: decreasing temperature difference to specified AT.
®Way up: increasing temperature difference to specified AT.

Fig. 3. (a) Temperature contour lines (A7* = 0.025) and (b) projected velocity vector at z* = 0.5, for Ma = 28,257, Pr =7, Gr = 240.95

and As = 0.73 within one period.
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steady 2D axisymmetric flow becomes stationary 3D
non-axisymmetry in the first bifurcation and becomes
oscillation in the second bifurcation. In high-Pr flow,
steady 2D axisymmetrical flow loses stability to become
directly 3D unsteady with increasing Ma. In the present
study, 1 cst silicone oil is adopted, and the physical and
geometrical conditions are listed in Table 2. For 4s = 1,
Pr=16.08, and Ma = 1.98 x 10*-2.31 x10*, a pulsating
temperature and velocity field are observed, and this
oscillatory mode prevails throughout the time span of the
simulation. By applying fast Fourier transfer (FFT) to
temperature or velocity time curve, only one funda-
mental frequency and its harmonics are found, therefore
periodic oscillation is confirmed. As shown in Fig. 4, the
cold and hot spots on the free surface are alternated on

Table 2
Physical and geometrical conditions

every half-period, but the positions of cold and hot spots
are kept in the oscillatory process. The direction of sur-
face azimuthal velocity is changed after a half-period.
And also the 2-fold symmetrical structure can be found
in Fig. 4, which corresponds to the so-called azimuthal
wave number m = 2. The azimuthal velocity is found to
grow and decay periodically with time. Fig. 5 shows a
temperature contour plot on the free surface within one
period. It also demonstrates that the cold and hot spots
in azimuthal direction are alternated after a half-period.
The standing wave-like oscillatory feature is exhibited in
both Figs. 4 and 5. By checking temperature contour plot
at the section of 0 = 0, 7 and 0 = 0.5%, 1.57 in Fig. 6, the
phase difference of half-period between 6 = 0,7 and
0 = 0.57, 1.57 can be found easily.

Density ¢ = 818 kg/m?

Constant-pressure specific heat C, = 1966.48 J/kg K
Kinematic viscosity v = 107 m?/s

Thermal conductivity £ = 0.1 W/m K

Surface tension ¢ = 0.04083 — 0.000084047 N/m
Gravity g = 0 m/s?

Height of liquid bridge # = 5 mm

Temperature difference AT and corresponding Marangoni number Ma

AT =28 K (Ma=231x10%), AT =32K (Ma=2.64 x 10

> T > T s dtp—> To412T, —> To +3ldr, —>

@)

(b)

Fig. 4. (a) Dimensionless temperature contour lines (A7* = 0.025) and (b) projected velocity vector at section of z* = 0.5 within one

period for Ma = 2.31 x 10* and 4s = 1.
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Fig. 5. Contour lines of dimensionless temperature on the free surface at (a) 19, (b) 79 + 1/41,, (c) 79 + 1/21, and (d) 7o + 3 /47, for
Ma =231 x 10* and 4s = 1.
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Fig. 6. Dimensionless temperature contour lines (A7* = 0.05) at sections of (a) § = 0, and (b) 0 = 0.5%, 1.57 within one period for
Ma =2.31 x 10* and 4s = 1.
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5. 3D rotating oscillatory thermocapillary flow

For 4As =1 and Ma > 2.64 x 10*, rather than pul-
sating oscillation, the rotating oscillatory convection is
formed. Fig. 7 shows a temperature contour plot and
projected velocity vector at mid-plane, which exhibits a
rotating 2-fold symmetrical structure feature. The azi-
muthal rotating angle is 7 in one period. Rather than
periodic growing and decaying of azimuthal velocity as
shown in Fig. 4, the velocity strength is kept in the ro-
tating oscillation as in Fig. 7. Fig. 8 is dimensionless
temperature-time curve at points r = R,z = H/2 and
0=i/20n (i=0,1,2,...,10) for both pulsating and
rotating oscillatory flow cases. It exhibits that the am-
plitude of temperature oscillation depends on position
alone azimuthal direction for pulsating oscillation as
Fig. 8(a). On the contrary, the approximate identical
oscillatory amplitude with a phase shift along azimuthal
direction is found for rotating oscillatory flow as shown
in Fig. 8(b).

For As =4, the azimuthal wave number m =1 is
obtained. For Ma = 1.65 x 10*, the pulsating oscillatory
feature is found initially, then it transits to the rotating
oscillation automatically. The rotating oscillation be-
comes stable at about /* = 2.4. (The stable oscillation is
defined here such that both the oscillatory amplitude
and frequency are kept constant.) The oscillatory main
frequency is kept as identical value (f* = 131.836) when
pulsating oscillation is replaced by rotating oscillation in
this case. For stable oscillatory state, only rotating os-

cillations are obtained in the present calculated cases for
As = 4. Fig. 9 indicates a temperature contour plot and
projected velocity vector for Ma = 1.65 x 10*, where the
rotating characteristics can be found easily, and the az-
imuthal rotating angle is 27 in one period.

6. Oscillatory frequencies and Ma

By applying FFT to temperature and velocity time
curve, the main frequency, which is defined as the fre-
quency with the largest amplitude in FFT spectrum, can
be obtained [14], and this main frequency is not found to
depend on the position. Fig. 10 exhibits the resulting
main frequencies for 4s = 1 and 4. It reveals approxi-
mately linear relationship between main frequencies and
Ma for As = 4 in periodic oscillatory regime. This result
is consistent with the experiment in [1] for As ~ 1.3-2.0
and also [8] for 4s = 1.5. For 4s = 1, this simple linear
relationship does not hold anymore. As shown in Fig. 11,
the highest main frequency is at Ma = 2.31 x 10%, then
the main frequency jumps to a low value at larger Ma.
With the further increment of Ma, this main frequency
keeps a constant, and then increases with the increment
of Ma. This frequency feature is similar to the experi-
mental report in [6] for 4s ~ 1, and also to the reports in
[8] for As =~ 0.83. Based on the present simulations, the
phenomenon of lower main frequency for higher Ma is
speculated to be caused by the change from pulsating to
rotating oscillatory modes. In Fig 11, the oscillations

> 0 —» T +141,—> T +12—> T +3/4 Tp_J

Fig. 7. (a) Dimensionless temperature contour lines (A7* = 0.025) and (b) projected velocity vector at section of z* = 0.5 within one

period for Ma = 2.64 x 10* and 4s = 1.
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(a) Ma = 2.31 x 10* and (b) Ma = 2.64 x 10*.
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Fig. 9. (a) Dimensionless temperature contour lines (A7* = 0.025) and (b) projected velocity vector at section of z* = 0.5 within one
period for Ma = 1.65 x 10* and As=4.
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Fig. 10. Relationship between Ma and dimensionless main
frequency f* for 4s = 4 and 1, Pr = 16.08 in periodic oscillatory
regime.

for Ma = 1.98 x 10* and 2.31 x 10* are pulsating mode,
and the oscillation at points with Ma > 2.64 x 10* in
Fig 11 is rotating mode. In fact, pulsating oscillation is
also found initially for 4s = 1 and Ma = 2.64 x 10, then
it becomes rotating oscillation automatically in the
evolution of flow structure. In this case, the oscillatory
main frequency is f* = 58.594 in initial pulsating
oscillatory regime, and then it decreases to f* = 43.945
when the pulsating oscillatory mode is replaced by
rotating oscillatory mode. In the most recent reference
[14], amplitude equations of hydrothermal waves for the
weakly non-linear behavior were solved, the required
parameters in amplitude equations were fitted from data
based on 3D numerical simulation. They reported that
finite amplitude azimuthally standing wave (pulsating
oscillation) decays to traveling waves (rotating oscilla-
tion) under conditions of Pr=4, A4s =1 and Gr =0,
and close to the critical Re, the former may persist for
long time. To confirm their conclusion, a solution of

60
58
56+
54 . -
52

50+ Pulsating
48 Oscillation .

46- Rotating Oscillation
44 n P
42+

Dimensionless Frequency f*=fH"

40 ———————————————
1.0 1.5 2.0 25 3.0 3.5 40 45 5.0 55 6.0
Marangoni Number (x104)

Fig. 11. Relationship between Ma and dimensionless main
frequency f* for As = 1 and Pr = 16.08.

oscillatory convection for As = 1 and Ma = 2.64 x 10*is
taken as initial condition for the case of As =1 and
Ma = 2.32 x 10%, instead of retaining rotating oscilla-
tory mode, the convection returns to pulsating oscilla-
tory mode within thermal diffusion time #* < 0.2, and
this mode prevails within the time span of simulation
(t* =2.0). This result implies the complexity of the
evolution of oscillatory mode, and it neither supports
nor denies Leypoldt’s conclusion under the present
conditions: Pr = 16.8, Gr = 0 and A4s = 1. Because this
3D simulation is time consuming, the available CPU
time does not allow a further confirmation in a direct 3D
simulation.

7. Conclusion

Three-dimensional oscillatory thermocapillary flow in
half-zone liquid bridge is investigated by means of FVM.
For 4s = 1, 2-fold symmetrical structure is obtained in
mid-plane, and there are two types of oscillatory modes:
pulsating and rotating modes. For Ma close to the onset
of oscillation, the pulsating oscillatory mode is observed
throughout the time span of simulation. With further
increasing Ma, the pulsating oscillatory mode is replaced
by rotating oscillation. The f*~Ma plot demonstrates a
frequency jump at Ma = 2.31 x 10*. Based on the present
simulations, the observed phenomenon of higher main
frequency with lower Ma is speculated to be caused by the
change of oscillatory modes: from pulsating to rotating
oscillatory modes. For As = 4, azimuthal wave number
mis 1, only rotating oscillation is found to be stable in the
present calculated cases and dimensionless main
frequencies are approximately proportional to Ma in
periodic oscillatory regime.
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